
Abstract- Electromyographic (EMG) signal obtained from 
surface electrodes is frequently used to evaluate muscular 
activity. Analysis of this signal can be facilitated if anatomy of 
the implicated muscles is known as well as thickness of 
subcutaneous fat layer and of the skin under the electrodes.  
Such information can be obtained with a manual segmentation 
procedure applied on magnetic resonance images (MRI) 
obtained in three orthogonal planes. 

 
I. INTRODUCTION 

 
The diagnostic of muscular impairment is often achieved 
from the analysis of surface EMG signal. This evaluation is 
usually done in absence of any information on the medium 
separating the skin surface from the muscular zone of 
activity. Such knowledge can be gathered from MRI, which 
is a very good tool to study anatomy and to make 
measurements on various organs [7]. This imaging technique 
can help to confirm the diagnosis of musculoskeletal diseases 
[2] and can also be used for the follow up and the evaluation 
of therapeutic procedures [3]. Measurement on different 
anatomical structures in an image implies segmentation. This 
consists in identifying their boundaries and that can be 
achieved by mathematical algorithms [1,3]. In this context, 
many research projects are devoted to automatic detection of 
these boundaries or to the optimization of acquisition 
parameters such as resolution [4] and contrast [5]. In practice, 
manual segmentation is the most frequently used method in 
spite of the fact that experts’ supervision is needed [6]. Such 
studies are mostly made on organs that offer good contrast 
with adjacent structures. When fuzzy boundaries are found, 
as between muscles, such analysis gets more difficult. We 
investigated this situation since analysis of EMG signal can 
be facilitated through knowledge on anatomical structures 
involved in surface recording. A method for the   
segmentation of skeletal muscles from MRI is proposed. 
 

II. METHODOLOGY 
 

MRI acquisitions of the upper limb of 6 healthy subjects 
were carried out with a 3D gradient spin-echo sequence. 
Acquisition time was 1 hour to obtain ~70 sagittal slices of 
the arm or the forearm. To identify the different muscles and 
measure their length, surface and volume, a specialized 
software1 was used on a PC (Celeron 500 MHz, 192 Mb of 
RAM). According to the field of view (FOV) of the 
acquisition, the voxel dimension was 1.41x1.41x1.50 mm. 
For the skin and the fat segmentation, an automatic procedure 
based on gray-level thresholding was used since their 
boundaries are well contrasted. For the muscles, a manual 
segmentation procedure executed along 3 planes was used. 
This procedure is divided in 4 steps: 

                                                           
1 SliceOmatic® 4.2: http://www.tomovision.com 

1) Axial segmentation: work is initially done in this plane 
because transverse slices of the upper limb can be easily 
obtained in an anatomical atlas. Segmentation is only carried 
out on slices where boundaries between the muscles can be 
easily detected  (Fig. 1.B); otherwise the slice is not used. 

2)  Sagittal segmentation: slices in this plane are treated 
as the axial ones. Segmentation is easier in this step 
considering the information available from the axial 
segmentation (Fig.1D and E). 

3) Coronal segmentation: with the information obtained 
from the 2 previous steps, a quite satisfactory segmentation 
can now be obtained. (Fig.1G and H). 

4) Refinement of the segmentation: by combining the 
information obtained in each plane from the above steps, and 
considering that physiological contours are regular, bounda-
ries between the anatomical entities are smoothed. (Fig.2). 
 

III. RESULTS 
 

For a non-expert user, the average segmentation time per 
muscle was ~5 hrs for the arm and 8 hrs for the forearm (due 
to the presence of many small muscles), for the first subject. 
With experience, these periods were reduced by 
approximately 50% when images of the 6th subject were 
analyzed. After the segmentation procedure, physical 
characteristics of each muscle (length, surface, volume) were 
obtained through interpolation between the slices. 3D 
rendering of the entire limb or of a single muscle can be done 
to visualize the structures under study. For instance in 
Fig.3A, an elastic band with markers was put around the arm 
to simulate indentation of surface electrodes on the skin. In 
Fig.3B, the skin is removed, but compression of muscles 
mass by the band can still be observed. Different lighting or 
color maps can be used and various points of view obtained. 

 
As the segmentation is only performed on slices where 

satisfactory contrast is present, information on some part of 
the structure may not be available. This situation was 
frequent in the tendon zones. A typical case is illustrated at 
Fig. 3 D for triceps. 
 

IV. DISCUSSION 
 
 In MRI where boundaries between anatomical structures 
can be problematic, a 3D acquisition protocol can be used. 
Segmentation in each of the available planes takes time but it 
minimizes the errors that a non-expert may produce. While 
the segmentation time is initially long, the operator can 
improve quite rapidly his knowledge on muscular anatomy 
and the procedure gets appreciably shorter. Processing time 
could further be reduced by the development of acquisition 
sequences or procedures providing greater contrast between 
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entire limb under study is imaged, a full-length view of all its 
muscles can be obtained but the pixel size is large.  For a 
single muscle, FOV can be reduced and, with a small pixel 
size, it could eventually be possible to detect muscular mass 
changes in the course of therapeutic or training exercises. 
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V. CONCLUSION 

 
On presently available MRI, manual segmentation of the 

same muscle along 3 different planes can provide reliable 
results when performed by non-expert persons. The use of 
contrast agents or new MRI acquisition sequences can help 
improve image quality. This would make the manual 
procedure less time consuming and eventually lead to reliable 
automatic segmentation of muscles. 
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